
LinuxVirtualServer OpenSource Project 1

Introduction
This paper presents a strategy to extend the current
Linux kernel code for better detection of media link
failure. All modern routing software needs to be able to
diagnose media link activity in order to drive its own
internal finite state machine (FSM). This FSM drives
state transitions and must has low level event
abstraction to guarantee stability. This small paper will
be focused on Keepalived/VRRP implementation and
needs.

Modern Networking software needs
To speed developement, much routing software is
implemented in user space e.g. Keepalived/VRRP. As
well, routing software such as VRRP also must access
low level information, especially network interfaces.
On loading, VRRP queries the kernel for this
information producing a user space abstraction of the
interfaces, which can be later queried by userspace
processes. The NETLINK messaging subsystem
provides kernel to userspace communication through
subscription to a netlink broadcast socket. By a process
known as, kernel netlink reflection, the userspace
information is updated with changes to internal data
structures.

There are several subscription groups: the
RTMGRP_LINK group handles media link related
kernel events. Through a userspace netlink socket
registering RTMGRP_LINK group. On LINK event
(eg: IFF_UP|DOWN), the kernel generates a netlink
broadcast catchable userspace through a netlink socket
registering RTMGRP_LINK group. Thus, when some
other piece of software brings an interface down, then
Keepalived/VRPP can catch this event.

The problem for Keepalived/VRRP and most routing
software is that media link state changes don’t generate
a kernel netlink broadcast preventing user space routing
software from acting on these events. Thus,
IFF_UP|DOWN generate netlink broadcast, but not a
media link state change notification.

Current media link failure detection
Facing the problem described in the last section, there is
a need to catch NIC state changes in userspace. There
are severals ways to determine NIC link status. All
modern NICs have a dedicated chipset in charge of link
media. This chipset provides a NIC driver register
abstraction that can be polled both from kernel or
userspace applications. The most widely used registers

are the MII registers which provide information on the
state of the NIC hardware. In our case the most
interresting MII register is the BMSR (Basic Mode
Status Reg) which contains the media link status. All
NICs drivers implement a timer on this MII BMSR to
update the kernel with the content of this register. This
contents of this register can then be accessed in
userspace through a ioctl() system call.

The current strategy for media link failure detection is
to register a userspace a timer thread periodically
polling this BMSR through ioctl() system call. This is a
basic polling design which does not scale well. For 10
NICs it works acceptably well, but for 20 NICs, the
CPU will be tied up with ioctl() calls.

LINKWATCH Design
In March 2002, Stefan Rompf, <sux@loplof.de>
published a patch to the LKML that were approved for
2.5 inclusion in December 2002. The basic idea of the
patch is to provide kernel netlink broadcast events on
link media state changes. LinkWatch provides hooks in
netif_carrier_on() and netif_carrier_off() to queue NIC
link events. Then a timer thread will run the queue to
generate netlink brodcast events. This timer thread will
reflect userspace the IFF_RUNNING flag according to
media link status.

With this new design userspace routing software can
move from a polling design to an event design when
testing for the IFF_RUNNING interface flag.

LINKWATCH & Keepalived/VRRP
For intensive VRRP uses or simply for cleaner way of
use, I really recommand to use this new design. You
will benefit a better performance reducing the CPU
usage. This patch is now part of 2.5 branch, since I
really consider it essential, I will maintain a 2.4 release
that you will be able to download on the Keepalived
website.

LINKWATCH NIC drivers Compatibility
Most common drivers are compatible with this design
since they call netif_carrier_on() and netif_carrier_off()
inside their BMSR timer thread. So drivers like 3c59x,
eepro100, e100, e1000, tg3 are compatible with
linkwatch design. Other drivers must be patched to call
netif_carrier facilities functions to provide netlink
broadcast. Since the Tulip driver is widely used we only
provide a quick patch for it.

Media Link failure detection for Modern routers

Alexandre Cassen
Linux Virtual Server OpenSource Project

Paris, France, December 2003
acassen@linux-vs.org, http://www.LinuxVirtualServer.org/~acassen/

