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Abstract 
 
This paper describes one implementation of the 
VRRPv2 protocol. We have done enhancements of the 
original protocol for use with Linux Virtual Server. The 
goal of this document is to present the software design 
of the VRRPv2 implementation for use with LVS. We 
will focus on the implementation, so attempted audi-
ence is network software designer, experimented sys-
tem administrators and all hacking person looking for 
VRRPv2 implementation internals. Finally the goal of 
this document is a real world example on how our de-
sign can be used in conjunction with Linux Virtual 
Server to provide virtual services shared by multiple 
LVS directors. 
 
1. Introduction 
 
Loadbalancing is a good solution for service 
virtualization. When you design a loadbalanced 
topology you must take a special care of : 
 
• Realserver availability using healthchecking. 
• Loadbalancer availability using failover protocol. 
 
Realserver availability provide a global High Available 
virtual service. This problematic is mainly handled 
using healthcheck software. But using a loadbalancer 
director you introduce a Single Point Of Failure for the 
virtual service. So loadbalancer high availability must 
be provided. In this paper we will not present 
healthchecker, we will specially focus on the second 
point. We will trait this topic using a protocol especially 
designed to handle gateway virtualization/failover 
called VRRPv2. This protocol will give us the ability to 
define a “Virtual Loadbalancer”. This “Virtual 
Loadbalancer” will be compounded by multiple “Real 
Loadbalancer” that can be active at a time and 
monitoring each other. 
 
2. VRRPv2 Overview 
 
“VRRP specifies an election protocol that dynamically 
assigns responsibility for a virtual router to one of the 
VRRP routers on a LAN.  The VRRP router controlling 
the IP address(es) associated with a virtual router is 
called the Master, and forwards packets sent to these IP 
addresses.  The election process provides dynamic fail 
over in the forwarding responsibility should the Master 
become unavailable.  This allows any of the virtual 
router IP addresses on the LAN to be used as the 
default first hop router by end-hosts.  The advantage 
gained from using VRRP is a higher availability default  

 
 
 
 
 
 
path without requiring  configuration of dynamic 
routing or router discovery protocols on every end-
host.” [rfc2338]. 
 
3. System Architecture Overview 
 
Our global logical architecture is illustrated in the 
following figure : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As described into the rfc2338, VRRPv2 protocol 
manipulate floating IP addresses roaming between 
routers. 
 
3.1 Definitions 
 
Our VRRPv2 implementation uses the following 
notions [rfc2338.1.2] : 
 
• VRRP Instance : A thread manipulating VRRPv2 

specific set of ip addresses. A VRRP Instance may 
backup one or more VRRP Instance. In our figure 
1 we are dealing with 4 VRRP Instances. One 
owning (VIP1,VIP2), one owning (VIP3,VIP4), 
one owning (DIP1) and one owning (DIP2). It may 
participate in one or more virtual routers. 

 

• IP Address owner : The VRRP Instance that has the 
IP address(es) as real interface address(es). This is 
the VRRP Instance that, when up, will respond to 
packets addressed to one of these IP address(es) for 
ICMP, TCP connections, … 
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Figure 1: Virtutalized loadbalancer 
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• MASTER state : VRRP Instance state when it is 
assuming the responsibility of forwarding packets 
sent to the IP address(es) associated with the 
VRRP Instance. This state is illustrated on figure 1 
by red line. 

 

• BACKUP state : VRRP Instance state responsible of 
packets forwarding when the current VRRP 
Instance MASTER state fails. 

 

• Real Loadbalancer : A LVS director running one or 
many VRRP Instances. 

 

• Virtual Loadbalancer : A set of Real Loadbalancer. 
 

• Synchronized Instance : VRRP Instance with which 
we want to be synchronized. This provide VRRP 
Instance monitoring. 

 

• Advertisement : The name of a simple VRRPv2 
packet sent to a set of VRRP Instances in 
MASTER state. 

 
3.2 System workflow 
 
We want to design a full redundant architecture with 
outgoing traffic loadbalancing. This is a very common 
use of such a protocol. When setting up LVS director 
high availability (virtualized loadbalancer) we want the 
backup director to handle traffic too. That way LVS 
directors will be redundant and active at a time. This 
architecture is illustrated on figure 1. We define half of 
the host to route through DIP1 and the other half to 
route through DIP2 [rfc2338.4.2]. This consideration 
introduce the synchronization handling. 
 
In our case study, Realserver Pool 2 belong to virtual IP 
addresses VIP3 & VIP4. So remote client access those 
VIPs to access Realserver Pool 2 service. But 
Realserver Pool 2 route its outgoing traffic through 
DIP2, so DIP2 & VIP3/VIP4 must be active on the 
same director to preserve routing path. This finally 
mean that if LVS director 2 LAN  interface fails, WAN 
interface IP address(es) owned must be set on the 
redundant LVS director 1 WAN interface. 
 
Considering VRRP configuration, each LVS directors 
must have the knowledge of the whole LVS redundant 
topology. This mean that both LVS directors run 4 
VRRP Instances. 2 VRRP Instances in MASTER state 
and the others in BACKUP state. MASTER/BACKUP 
state are symmetric on the both LVS directors VRRP 
configuration. On LVS director 1, the VRRP Instances 
configuration looks like : 
 
• VI_1 : In MASTER state - owning VRRP VIP1 & 

VIP2. 
• VI_2 : In MASTER state - owning VRRP DIP1. 
• VI_3 : In BACKUP state – backuping VRRP VIP3 & 

VIP4. 
• VI_4 : In BACKUP state – backuping VRRP DIP2. 
 

On LVS director 2 we have the symmetric 
configuration where VI_1 & VI_2 are in BACKUP 
state and VI_3 & VI_4 are in MASTER state. If one 
VRRP Instance in MASTER state fails, to preserve 
routing path, the VRRP transition state must follow the 
workfow : 
 
• VRRP DIP2 fails : 
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LVS director 1 VI_4 stop receiving VRRP 
advertisements from LVS director 2 VI_4. The DIP2 
automatically takeover on LVS director 1. 
 
• VRRP Instance VI_3 on LVS director 1 

synchronization to MASTER state : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally VIP3 & VIP4 are synchronized on LVS director 
1 to preserve routing path. If LVS director 2 LAN 
interface is shut, this is a finite state fails for LVS. So 
others MASTER VRRP Instances need to be 
synchronized. 
 
The VRRP MASTER Instances synchronization 
convergence is a derivation of the VRRP protocol. This 
mean that the IP takeover convergence is extremely 
depending on the VRRP timers handling. 
 
In this fail state where LVS director 2 is depreciated, all 
traffic is handled by LVS director 1. This state must be 
considered as a takeover transition state. This mean that 
if LVS director 2 LAN interface is becoming available, 
all the VRRP Instances will transit to their initial VRRP 
state. So the stable state is the initial state, takeover 
state is completely temporary because it is all time 
waiting to transit to its initial state. 
 
We have just describe this VRRP Instance 
synchronization state as it is not in the VRRP [rfc2338]. 
All the other state transition will not be presented in this 
document since it is efficiently described into the 
VRRP [rfc2338]. 
 
 
 
 
 
 

4. Implementation issues 
 
The VRRPv2 implementation is articulated around 3 
software components : 
 
• VRRP Socket Pool 
• VRRP Packet Dispatcher 
• VRRP Instance Synchronization 
 
VRRP implements its own scheduling framework to 
handle fd timeout and packet dispatching. So the 2 first 
point are referring to the VRRP scheduling framework. 
 
4.1 VRRP Socket Pool 
 
This part of the VRRP scheduling framework is only 
used during the VRRP bootstrap. It register the VRRP 
Instance to a global I/O multiplexing framework. The 
result of this step is the creation of a sharing read fd 
thread for future I/O dispatching. The design is 
illustrated in the Figure 5 : 
 
 
 
 
 
 
 
 
VRRP is an interface specific protocol. This mean that 
a VRRP Instance is bound to a specific interface for 
inbound & outbound traffic. We can figure out the 
socket pool importance here. As described into VRRP 
[rfc2338.5.3.6], VRRP is a layer4 protocol which can 
run in conjunction of IPSEC-AH. The VRRP 
advertisements can be either IPSEC-AH packet or 
direct VRRP packet protocol. So we need to deal with 2 
different protocols at a time on the same physical 
interface (ethernet interface for us). This highlight that 
many VRRP Instance using the same protocol (IPSEC-
AH or VRRP) share a single fd. 
 
The figure 5 show our internal VRRP socket pool 
implementation. Each NIC own a maximum of 2 fds 
(one for VRRP, the other for IPSEC-AH). All the 
VRRP Instances are (de)multiplexed through this fds. 
So our design can handle 2*n (de)multiplexing points. 
 
4.2 VRRP Packet Dispatcher 
 
The second part of the global VRRP scheduling 
framework is the VRRP Packet Dispatcher. It provide 
an asynchronous threaded framework to handle 
incoming and outgoing VRRP packets. During the 
VRRP bootstrap, a VRRP Socket Pool is created. 
Finally the VRRP Socket Pool register a VRRP Packet 
Dispatcher per VRRP Socket Pool fds. Then each fds is 
handled asynchronously using a global software I/O 
multiplexer. This global workflow is illustrated in the 
figure 6 : 
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Figure 4: VRRP VIP3 & VIP4 synchronisation 
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Figure 5: VRRP Socket Pool design 
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6. VI_3 in MASTER state receive this advertisement 
and transit to BACKUP state. 
 
7. Here is the synchronization end event. 
 
If LAN NIC on LVS director 2 becomes alive all the 
VRRP Instances transit to their initial VRRP state. With 
the step 7 we can highlight a possible flapping Instance 
state due to a side effect. Axiom specify that 
(VI_3,VI4) must have the same state at a time. So 
during step 6, VI_3 transit to BACKUP state. So VI_4 
must transit to BACKUP state too. But if VI_4 transit 
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Figure 6: VRRP Packet Dispatcher design
VRRP Packet Dispatcher can handle many VRRP 
tances sharing the same fd. The central part of the 

cket dispatcher is the state handler responsible of 
RP state transition and synchronization. 

3 VRRP Instance Synchronization 

e last software component is the Instance 
nchronization. The global view of this part is 
strated in the figure 4. The implementation follow 
 workflow : 

to BACKUP state due to a network failure, VI_4 will 
never receive MASTER state advertisements. So VI_4 
on LVS director 2 can assume that MASTER is down 
and then transit to MASTER state it self ! And so on, 
axiom specify (VI_3,VI_4) must be sync. So VI_3 on 
LVS director 2 transit to MASTER state and start 
sending MASTER advert. Symmetrically, VI_3 receive 
remote MASTER advertisements and become 
BACKUP since its priority is minor than initial 
MASTER (VI_3 on LVS director 2). So on, axiom 
(VI_3,VI_4) must be sync… So VI_4 on LVS director 
1 become BACKUP. But VI_4 on LVS director 1 
timeout receiving remote MASTER advert so transit to 
MASTER state…. And so on… we repeat this infinitely 
so we have a synchronization loop causing a flapping 
roaming IP… We can call this phenomena a 
“synchronization circuit” (like the famous NOKIA 
one). To handle this possible synchronization infinite 
loop we can fine the axiom as follow : 
 
I. Predicates 
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Figure 7: VRRP Instance Synchronization
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 figure 7, we indicate VRRP Instance in MASTER 
te in initial state. To explain efficiently how Instance 
nchronization works we take the sample illustrated in 
 figure 7. In this configuration we assume that (VI_1 
I_2) and (VI_3,VI_4) must be sync. So if one 

STER state instance transit to another state, the 
chronized instance must transit to the same state. 

LAN NIC on LVS director 2 fails, so VI_4 stop 
ding MASTER state advertisements.  

VI_4 in BACKUP state timeout on receiving 
STER advertisements. So VI_4 transition to 
STER state on LVS director 1 and start sending 

vert (with IPSEC-AH sequence synchronization if 
ng IPSEC-AH). 

Our axiom imply that (VI_3,VI_4) must be in the 
e state at a time. 

VI_3 in BACKUP state transit to MASTER state by 
ding the higher VRRP advertisement to force 
ction (The VRRP owner advertisement). 

All BACKUP and MASTER VRRP Instances 
eived this owner adver. 

 
(1) init_state(VI_3)LVS2 <> init_state(VI_3)LVS1

(2) (1)=> if init_state(VI_3)LVS2 = MASTER
then init_state(VI_3)LVS1 = BACKUP

(3) Prio(VI)MASTER > Prio(VI)BACKUP

(2),(3)=> Prio(VI_3)LVS2 > Prio(VI_3)LVS1

(5) (state(VI_3)=state(VI_4))LVS1
<> (state(VI_3)=state(VI_4))LVS2

(6) state(VI_3)LVS2 = BACKUP
& init_state(VI_3)LVS2 = MASTER
=> state(VI_4)LVS2 = FAULT

(7) (3)=> if state(VI_4)LVS2=DOWN
then state(VI_4)LVS1=MASTER

(8) state(VI_3)LVS2=MASTER
& state(VI_4)LVS2=FAULT
=> state(VI_4)LVS2=MASTER

II. Finite states handling 

Finite state of figure 4 :
(5)&(7) =>
if state(VI_3)LVS1=MASTER
then state(VI_3)LVS2=BACKUP

(6) => state(VI_4)LVS2=FAULT

In the FAULT state the VRRP Instance continue
sending advertisements. So when it become
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alive it continue sending advertisements with-
out eventual IPSEC-AH sequences synchroniza-
tions.

Finite state initial state (after a takeover):
LAN NIC of LVS director 2 become alive :
(3) => state(VI_4)LVS1=BACKUP
(5) => state(VI-3)LVS1=BACKUP

=> state(VI_3)LVS2=MASTER
(8) => state(VI_4)LVS2=MASTER

So we are safely back to the initial state.

5. Conclusion & future work 
 
In this paper we have introduced a solution for LVS 
directors failover using the VRRP protocol. This 
protocol was especially designed for this purpose and 
provide an acceptable security level using IPSEC-AH 
authentication (data integrity & anti-replay). The use of 
this code in conjunction of a healthchecking stack can 
provide a good solution for transparent directors & 
realservers failover. This is the goal of the keepalived 
project : http://keepalived.sourceforge.net : provide a all 
in one tool to provide realservers & directors failover. 
 
Currently code has been tested with 2 LVS directors 
and 4 VRRP Instances. The code need to been audited 
with many VRRP Instances handling at a time. The 
VRRP Instance timer need to be fined during the 
instance synchronization to limit VRRP protocol 
convergence. Currently we do not handle VRRP 
VMAC since linux kernel doesn’t permit to deal with 
more than one MAC address per physical interface. We 
use gratuitous ARP to update remote router/hosts arp 
caches (which can produce a TTL expiration during 
takeover). Need to spend more time into the kernel 
source to evaluate work… If you have inputs on this 
topics fill free to send it to me (it will save me time �) 
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