

Introduction
The remainder of this document describes the features,
design goals and theory of syncd strong authentication
extension. Current syncd multicasts IPVS connection
entries in a plaintext fashion. These multicasted
messages are caught by backup IPVS routers
subscribed to syncd multicast group and then appended
into local router IPVS connection table. Since IPVS
loadbancing decisions are scheduled using this
connection table, this document is an attempt to add
authentication provisions into syncd to protect against
packets injection and other malicious attacks.

Syncd Authentication global design
To support message authentication, we add a new
header :

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Sequence Number

HMAC-MD5-96bit ICV

We add two new fields. A 32-bit sequence number field
to deal with anti-replay attacks and a 96-bit trunc ICV
for keyed digest. This design is inspired from the one
we found in [IPSEC-AH]. This new header will be
inserted between ip_vs_sync_mesg header and first
ip_vs_sync_conn. As keyed digest algorithm, we will
use [HMAC-MD5]. The main goal is to compute an
Integrity Check Value (ICV), using [HMAC-MD5],
over the whole syncd message. The sequence number is
part of the computation. This brings the following
benefit :

• Anti-replay prevention: Since sequence number is
part of the ICV computation, any attacks based on
packet replay will be dealt.

• Message manipulation: Any attacks based on
manipulating the message field in order to pertube
final IPVS scheduling decision will be dealt.

For simplicity reasons, we will not implement any kind
of key exchange mechanism. icv-key used for ICV
computation will be locally configured on all IPVS
routers. So administrator must ensure this icv-key is the
same on all IPVS routers. To keep things simple, we
will not support different icv-key specification for
master and backup state syncd, instead the same icv-
key will be used for both state. The last assumption
made is to not support asymmetric message
authentication handling. In this last point, we mean that
an IPVS router can not deal with authenticated
messages for master state and unauthenticated messages
for backup state (and reciprocity), if authentication is
set at the master state, then syncd will assume that

IPVS Syncd Strong Authentication extension

Alexandre Cassen
Linux Virtual Server OpenSource Project

Paris, France, March 2004
acassen@linux-vs.org, http://www.LinuxVirtualServer.org/~acassen/

incoming messages in backup state MUST use
authentication. This is kind of binary authentication
selection while configuring syncd, use or not to use the
syncd message authentication that is the question.

The Sequence number is monotonically increased by
one each time a new syncd message is created. Since
syncd is not an election protocol we don't need to deal
with kind of anti-cycle mechanism in order to broke a
potential dropping loop. Instead, the syncd maintains a
local sequence number counter as dropping policy. This
mean, while processing incoming syncd message, the
sequence number received in the syncd message is
compared with a local copy, if sequence number in the
syncd message is greater than the local copy then the
message is granted otherwise dropped.

Master state extensions
For optimization reasons, the hmac-md5 at master state
will be processed using incremental update. The syncd
code uses the Kernel [Crypto API]. The ICV
computation is done using the following steps:

• icv_init: When a new syncd message is allocated
we first start with headers initializations. First one
is the ip_vs_sync_icv, we set the sequence number
to the locally counter increased by one and zero the
ICV field. Next we initialize the hmac-md5 tfm
and update it using the previously ip_vs_sync_icv
initialized :

 /*
 * MD5 update start with icv header. We skip the
 * sync_mesg header since nr_conns and size are
 * mutable during MD5 update until curr_sb is
 * fully filled.
 */
• icv_update: Next when a new connection is

received by the ip_vs_sync_conn function, those
connections data are appended to the current sync
buffer and the hmac-md5 tfm is updated. This
process continues until max buffer sending size is
reached.

• icv_final: When syncd message is ready we simply
update the hmac-md5 with the ip_vs_sync_mesg
data finish the hmac-md5 tfm to generate the final
digest. This value is then set to the
ip_vs_sync_icv's icv field :

 /*
 * Final MD5 Update. The last MD5 incremental
 * update is done on the sync_mesg header since
 * the nr_conns and size fields are now inmutable.
 */

LinuxVirtualServer OpenSource Project

mailto:acassen@linux-vs.org

Backup state extensions
hmac-md5 updates are not commutative operations.
This is why we need to use the same update order as
during master production. Only the connections entries
buffer can be factorized to a single hmac-md5 update.
This is why we divided the incoming message sanity
check into three steps :

• Initialize: Initialize the backup hmac-md5 tfm.
Copy the incoming message ICV field into a
temporary place and zero the field. Start with a first
update over the ip_vs_sync_icv header.

• Compute connections: Update hmac-md5 over the
whole connection buffer.

• Generate ICV: The last hmac-md5 update is done
over the ip_vs_sync_mesg header and the result is
generated. The very last step compares both ICV to
drive the dropping decision.

For performance reasons and since crypto step are CPU
consuming, we optimized the sanity check to first test
the sequence number. If sequence number is lower than
local copy then no need to compute hmac-md5, we
simply drop these packets since it refers a sequence
already processed.

Incoming message processing security
policy
The last pending point is for the ip_vs_sync_mesg
header. Since, syncd messages can be generated using
two different policies (with or without authentication),
we need to give to the receiving point a clue on which
policy must be used on his side.

We have 2 alternatives:

• New 8bit field to store options. Instead of a fully

qualified 'auth' field, we prefer 'Options' since we
will be able to store other infos than auth ones:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Count Conns SyncID Size
Options Reserved

• Choose the syncd processing mode based on

configuration step.

Incoming messages processing is critical since
connections presents in messages will be appended into
IPVS connection table driving the IPVS scheduling
decision. It is much more safe setting the daemon
processing mode during configuration step than letting
daemon determine which mode must be used based on
incoming messages options field. If malicious packets
are injected, this field value can totally turn off the ICV
protection, which will make ICV protection a fake
extension. We prefer letting configuration decision to
the administrator than auto-select processing mode.
This means that administrator MUST configure all the
syncds to use the same processing mode.

For example, consider daemon in backup state
configured to use authentication mode processing. If
malicious packet is injected without ICV header, this
will only have for effect to introduce buffer offset while
processing message, and icv value computed will not be
valid and so packet will be dropped.

Configuration considerations
To use authentication mode, a new ipvsadm option
have been created. This option is '--icv-key'. If specified
on the ipvsadm command line, daemon is configured to
use authentication mode with the specified secret key
for ICV computation. As previously discussed, syncd
will not support mixed mode for both master and
backup daemon. If one daemon start with authentication
mode, then when starting second one it will
automatically use authentication mode (and
reciprocity).

For instance:

ipvsadm --start-daemon master --syncid 150 --icv-key toto234
ipvsadm --start-daemon backup --syncid 150

TTL considerations
The current syncd design is to set IP TTL to 1 so that
multicasted messages can not be forwarded by borders
routers. We just want to discuss here to potentially
switch this design to use TTL=255 instead. We want to
introduce security while processing incoming messages.
This is much more important securing receiving rather
than sending point since incoming messages received
will drive IPVS scheduling decision. We want to limit
as much as possible packets injections, especially if
packet are coming from border router's network.
Consider the following topology:

LinuxVirtualServer OpenSource Project

In this topology, LVS 1 and LVS 2 are using syncd in
both master & backup state. Consider that Router 1 is
miss-configured, or insecure, or local administrator
doesn't trust Router 1 administrator. From both LVS 1
& LVS 2 director, receiving a multicast IP message
with TTL=1 is ok. But considering IP protocol on the
receiving point, this mean that we are the last
forwarding router capable for this datagram. This mean
that we can receive such packet coming from Malicious
guy on a border network. For instance, on our diagram,
if Malicious guy forge a packet with TTL=2 (and router
1 can forward this), then LVS router will receive this
packet with TTL=1.

 If we use TTL=255, then things are much more
complicated for malicious guy. because TTL=255 is the
maximum IP filed value, and according to IP protocol,
TTL is decremented hop-by-hop. So if malicious guy
send packet the max value LVS directors will receive is
254. So if we use TTL=255 and syncd receives packet
with 255 TTL field value then this intrinsically mean
that this message has been generated on the same
network segment as the receiving point. This avoids
injection from border routers.

 Plus, the use of TTL=255 bring optimization
benefit since even if packets are valid (good icv, and all
sanity check), the first sanity dropping decision is made
upon this TTL field. If TTL<>255, then packet is
dropped even if valid, which will not monopolize CPU
while computing ICV.

 Another point, if we want to hide our syncd
stream, we just need to ensure that border routers are
not using any kind of mcast routing protocol (PIM,
DVMRP, ...). This will ensure syncd traffic is only
going on a local network segment.

References

[IPSEC-AH] S. Kent, R. Atkinson, « IP Authentication
Header», RFC 2402, November 1998.

[HMAC-MD5] Madson, C., and R. Glenn, "The Use of
HMAC-MD5-96 within ESP and AH", Work
in Progress.

[CryptoAPI] Linux Kernel source tree:
Documentation/crypto/api-intro.txt

LinuxVirtualServer OpenSource Project

	Introduction
	Master state extensions
	Backup state extensions
	Incoming message processing security policy
	Configuration considerations
	TTL considerations
	References

